Webinar: Optimizing Packaging’s Impact in the Supply Chain

Tom Blanck
Principal, Packaging Optimization Practice
Chainalytics
Lecturer, Georgia Tech SCL

Supply Chain Management Series (SCMS) Series
Optimizing Packaging's Impact in the Supply Chain
Sept 1-2, 2015 | Georgia Tech Global Learning Center
www.scl.gatech.edu/opisc
<table>
<thead>
<tr>
<th>Webinar Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Course Content</td>
</tr>
<tr>
<td>Questions/Discussion</td>
</tr>
<tr>
<td>Case Studies / Applications</td>
</tr>
<tr>
<td>Webinar Agenda</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Course Content</td>
</tr>
<tr>
<td>Questions/Discussion</td>
</tr>
<tr>
<td>Case Studies / Applications</td>
</tr>
</tbody>
</table>
Introduction
Packaging for the Supply Chain Professional

Supply Chain Professionals need to understand packaging’s important impacts on the supply chain

- Transportation Packaging for Supply Chain
- Identify Opportunities for Improvement
- Apply to Your Own Situations
Introduction
Packaging for the Supply Chain Professional

- Sustainability meets cost reduction
 - Cost savings is the business driver
- Go where the money is
 - The largest breakthroughs are in logistics
 - Leverage packaging design for system cost reduction
- Damage, Logistics Costs, Customer Experience
 - Three major motivators
Introduction
Packaging for the Supply Chain Professional

- Workshop format
 - Examples, pictures, case studies, references
- Flexibility to discuss questions and applications
- Small group discussions
- Pre-seminar prep work, real-life situations
- Expectations - what to get out of this seminar?
Packaging’s Impact on the Supply Chain

DAY 1 AGENDA
- Introduction
- Transport Packaging Basics
 - The Package Unit
 - Design, Material, Performance
 - Transportation & Distribution
 - Total Costs
- Where Things Go Wrong
- Case Studies / Applications
 - Examples and Exercise

DAY 2 AGENDA
- Damage
 - Hazards in Transportation
 - Defining the Environment
- Cost Reduction
 - Strategies for Optimization
- Sustainability
- Case Studies / Applications
Transport Packaging Basics

The Package Unit
Transport Packaging Basics
Packaging Testing

- **Real life shipments**
 - Problem with “let’s try it”?
 - Singular event, was it a smooth or rough journey?

- **Advantages of Laboratory Testing**
 - Save time – a lot of information in short time
 - Save money – less than fuel, driver and equipment costs
 - Know what the packaging/product has been subjected to
 - Testing replicates a harsh environment: controlled, predictable
 - Identify and isolate what causes problems
Impact of Packaging on the Supply Chain
Holist View of Packaging

- Supplier
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Conserved Resources

- Manufacturing
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Reduced Packaging Material

- Storage Warehouse
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Less Storage and Handling

- Distribution Center
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Less Fuel and Reduced Emissions

- Retail Store
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Minimized Waste

- Customer
 - Resources
 - Packaging
 - Disposal
 - Transportation
 - Damage
Transport Packaging Basics
The Seven Major Hazards

- Manual Handling
- Mechanical Handling
- Warehouse Stacking (Static)
- Vehicle Compression (Dynamic)
- Vehicle Vibration
- Horizontal Impact
- Environmental conditions
Seven Major Distribution Hazards

<table>
<thead>
<tr>
<th>Environment</th>
<th>Event and Hazard</th>
<th>Damage Observation</th>
<th>Simulation Tests</th>
<th>What to Do/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough Handling</td>
<td>Shock, drop, tip-over, side and top impact</td>
<td>Crushed corners, punctures, concealed</td>
<td>Shock and drop testing</td>
<td>Cushioning, handling features, right amount of materials</td>
</tr>
<tr>
<td>Warehouse Stacking</td>
<td>Vertical compression from stacking,</td>
<td>Crushed cases, toppled stacks, creased</td>
<td>Top to bottom compression, side clamp handling</td>
<td>Racking height limits, increased materials strength and</td>
</tr>
<tr>
<td></td>
<td>horizontal for clamp handling, static loads</td>
<td>sides, bulging rows on pallets</td>
<td></td>
<td>safety factors</td>
</tr>
<tr>
<td>In-Transit Stacking</td>
<td>Dynamic vertical compression for TL & LTL</td>
<td>Crushed cases, toppled stacks, creased</td>
<td>Compression testing (safety factors),</td>
<td>Anticipate mixed loads & stacking, increased safety factors</td>
</tr>
<tr>
<td></td>
<td>due to shock input</td>
<td>sides, bulging cases</td>
<td>Cubic ft. average load (density)</td>
<td></td>
</tr>
<tr>
<td>Vehicle Vibration</td>
<td>Vibration resonance, amplification through</td>
<td>Abrasion, fatigue, (wine glass shattering</td>
<td>Vibration resonance, random vibration/shake, real-life</td>
<td>Air ride vans, load restraints (damage free bars, airbags),</td>
</tr>
<tr>
<td></td>
<td>stacks due to vibration input</td>
<td>due to sound resonance)</td>
<td>ship tests</td>
<td>unitize load, harden products</td>
</tr>
<tr>
<td>Loose Load Vibration</td>
<td>Transient shock, stack amplification,</td>
<td>Drop, abrasion, excessive compression</td>
<td>Repetitive shock, (burst tests),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tumbling or falling load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Impact</td>
<td>Lateral compression, rail car switching</td>
<td>Shifted loads, crushed cases, blocked</td>
<td>Horizontal impact, (sled test)</td>
<td>Load blocking & bracing, cushion cars/hydro-cushion, avoid</td>
</tr>
<tr>
<td></td>
<td>and humping</td>
<td>doors, tip overs</td>
<td></td>
<td>humping</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Condensation in container, trapped heat in</td>
<td>Warped board, exploded edges, discoloration, frozen & brittle products, corrosion and rusting</td>
<td>Temperature, humidity cycling, atmospheric pressure, high & Low</td>
<td>Specialized transport (Reefer), insulated materials, corrosion prevention materials</td>
</tr>
</tbody>
</table>
PRODUCT + PACKAGE = ENVIRONMENT

The environment encompasses . . .

- Mode of distribution: truck, rail, air, ocean, etc.
- Handling methods: push/pull, fork, clamp, pallet jack
- Storage/warehousing: stack height, racking
- Conditions: temperature, humidity
- Palletization: over/underhang, double stack, floorloading
- Many other variables

Product + package < environment….Damage

Product + package > environment….Over Packaged
Packaging Performance

Increasing Packaging Costs
Decreasing Damage Costs
Real Cost of Damage

- **Price of product**
 - Cost of raw materials, manufacturing, logistics

- **What else?**
 - Markdowns, discounted products, slow product turnover
 - Rework: in field service, travel costs, expedited shipping costs
 - Return shipment costs, disposal cost of damaged unit
 - Interruptions: delayed installations, missed deadlines, project planning
 - Sustainability, waste
 - Customer satisfaction: value of dissatisfied/lost customer
Transport Packaging Basics

Material Costs
- Handling Costs
- Warehousing Costs
- Labor Costs
- Freight Costs
The Truth About Sustainability

MYTH
- It’s a bad thing
- It’s for tree huggers
- Costs more money
- Must be “green”
 - Compostable
 - Biodegradable
 - Recycled

REALITY
- Makes business sense
- Provides long-term benefits
 - Financial benefits
 - Environmental benefits

Sustainability with $avings
Sustainability
Environmental Impact of Packaging

Natural Resource Consumption

Greenhouse Gas Emission
Sustainability
Minimize Environmental Impact of Packaging

- **Material Consumption (Fiber):**
 - Reduce or Eliminate Materials
 - Substitute Packaging Materials

- **Greenhouse Gases (Diesel, Energy):**
 - Reduce Weight
 - Increase Shipping Densities
Two areas of focus for packaging improvement opportunities

Packaging Materials
Packaging Volume
Practical Steps to Minimize Environmental Impact

Reduce Material
- Reduced expenses
- Less material in waste stream
- Fewer disposal challenges
- Reduced weight
- Cube utilization

Examples
- Right-weighting packaging materials
- Shared load packaging strategies
- Minimize internal packaging
- Proper amounts of cushioning
Practical Steps to Minimize Environmental Impact

Reduce Volume

- Decreased freight costs
- Decreased small parcel shipment costs
- Increased throughput
- Storage, warehouse savings
- Handling, labor savings

Examples

- Eliminate headspace and voids
- Minimize case dimensions
- Pallet unit load optimization
- Primary packaging size
Sources for Sustainability Calculations:
- www.climatecrisis.net/takeaction/carboncalculator/howitwascalculated.html
- www.replanttrees.org/biz%20calc/BusForm.htm
- www.papercalculator.org
- http://www.design-compass.org/
- http://www.epa.gov/sustainability/
- national renewable energy lab - http://www.nrel.gov/
Assumptions (from website sources):

- CO₂ per combusted gallon of diesel = 22.2 lbs/gal
- 3052 Tons of Diesel consumed for 14 Day Trip Ocean Vessel
- Max Load of 3,875 Containers (40’) per Ship
- Diesel weighs approx. 7 lbs/gal
- Average mpg Diesel for Truck and Trailers = 7.5 mpg
- 101lbs of corrugated material equivalent to 1 tree
Case Study: Meat Products

Objective

- Reduce Packaging Damage During Transit
- Decrease Supply Chain Costs
Case Study: Meat Products

Solution

- Solve for Damage
- Optimize for Cubic Densities and Transit Efficiencies
- Utilize Shared-Load Concepts
- Improve Stacking Performance
Case Study: Meat Products

Solution

ORIGINAL CASE

16 x 11 x 5.25
90 cases per pallet

REDESIGNED CASE

15.125 x 9.5 x 4.875
144 cases per pallet

Quantity Difference: 54 cases
Increase: 60%
Case Study: Meat Products

Solution

<table>
<thead>
<tr>
<th>ORIGINAL CASE</th>
<th>REDESIGNED CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60% More Cases per Pallet</td>
</tr>
</tbody>
</table>

60% More Cases per Pallet
Case Study: Meat Products

Results: For Each Million Units

<table>
<thead>
<tr>
<th>BUSINESS RESULTS</th>
<th>SUSTAINABILITY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Savings $125,000</td>
<td>C-Flute Reduction 3,165,305 ft²</td>
</tr>
<tr>
<td>Labor Savings $5,000</td>
<td></td>
</tr>
<tr>
<td>Warehouse Savings $86,000</td>
<td>Pallet Reduction 4,400</td>
</tr>
<tr>
<td>Pallet Savings $19,000</td>
<td></td>
</tr>
</tbody>
</table>

Bottom Line:

$235,000 Costs Saved

164 Tons Fiber Reduced
Webinar Agenda

- Introduction
- Course Content
- Questions/Discussion
- Case Studies / Applications
Webinar Agenda

- Introduction
- Course Content
- Questions/Discussion
- Case Studies / Applications
Questions and Discussion for the Course

- Potential Questions
 - Retail vs. CPG vs. Industrial?
 - What preparation is required? Expectations from participants?
 - What about e-Commerce?

- Inputs from Participants
 - Tailored content and applications
Webinar Agenda

- Introduction
- Course Content
- Questions/Discussion
- Case Studies / Applications
Webinar Agenda

Introduction

Course Content

Questions/Discussion

Case Studies / Applications
Case Study: Clear Plastic Wrap

Objective

Optimize Product Dimensions to Reduce Material Consumption
Case Study: Clear Plastic Wrap

Solution

- Space Saving Carton Reduction ~ 16%
- Core Size Reduction ~ 23%
- Corrugated Case Reduction ~ 18%
- New Unit Load Configurations ~ 30%

ORIGINAL: 1.625” REDESIGNED: 1.25”
Case Study: Clear Plastic Wrap

Solution

<table>
<thead>
<tr>
<th>ORIGINAL CASE</th>
<th>REDESIGNED CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30% More Cartons per Pallet</td>
</tr>
<tr>
<td></td>
<td>18% Corrugated Reduction</td>
</tr>
</tbody>
</table>
Case Study: Clear Plastic Wrap

Results: For Each Million Units

<table>
<thead>
<tr>
<th>BUSINESS RESULTS</th>
<th>SUSTAINABILITY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Savings</td>
<td>Paper Reduction: 2,559,524 ft²</td>
</tr>
<tr>
<td>Freight Savings</td>
<td>Pallet Reduction: 2,200</td>
</tr>
<tr>
<td>Labor, Warehouse, & Handling Savings</td>
<td></td>
</tr>
<tr>
<td>$300,000</td>
<td></td>
</tr>
<tr>
<td>$75,000</td>
<td></td>
</tr>
<tr>
<td>$40,000</td>
<td></td>
</tr>
</tbody>
</table>

BOTTOM LINE:

- **$415,000** Costs Saved
- **33 Tons** Fiber Reduced
- **1,400 Tons** CO₂ Eliminated
Case Study: Medical Device

Objective

- Decrease Transit Damage
- Identify Improvement Opportunities
Case Study: Medical Device

Solution

Tray Re-Design with Paired Products

<table>
<thead>
<tr>
<th>ORIGINAL VS. RE-DESIGNED TRAY</th>
<th>Original</th>
<th>Re-designed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>11.15</td>
<td>9.41</td>
</tr>
<tr>
<td>Width</td>
<td>7.625</td>
<td>7.44</td>
</tr>
<tr>
<td>Height</td>
<td>2.625</td>
<td>2.625</td>
</tr>
<tr>
<td>Cube</td>
<td>223</td>
<td>184</td>
</tr>
<tr>
<td>Reduction</td>
<td></td>
<td>18%</td>
</tr>
</tbody>
</table>

RE-DESIGNED TRAY

Cube 184
Solution

<table>
<thead>
<tr>
<th>OLD CONFIGURATION (700)</th>
<th>NEW CONFIGURATION (800)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14% More Units per Pallet</td>
<td></td>
</tr>
<tr>
<td>9% Corrugated Reduction</td>
<td></td>
</tr>
</tbody>
</table>

Case Study: Medical Device
Case Study: Medical Device

Results: For Each Million Units

<table>
<thead>
<tr>
<th>BUSINESS RESULTS</th>
<th>SUSTAINABILITY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Savings</td>
<td>Paper Reduction 66,000 ft²</td>
</tr>
<tr>
<td>$86,000</td>
<td></td>
</tr>
<tr>
<td>Freight Savings</td>
<td>Pallets Eliminated 420</td>
</tr>
<tr>
<td>$14,000</td>
<td></td>
</tr>
<tr>
<td>Labor, Warehouse, & Handling Savings</td>
<td>Tray Material Savings 18%</td>
</tr>
<tr>
<td>$8,000</td>
<td></td>
</tr>
<tr>
<td>Sterilization Savings</td>
<td>Lid Material Savings 15%</td>
</tr>
<tr>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>

Bottom Line:

- **$108,000** Costs Saved
- **6 Tons** Fiber Reduced
- **270 Tons** CO₂ Eliminated
An ROI challenge for participants:
- Bring a packaging challenge to be solved
- Take home new idea that can be applied to your situation
Conclusion

- What questions do you have about your system: what do you need to learn or know?
- Where is the money in your packaging or supply chain system?
- How are you going to approach packaging cost reductions and sustainability improvements?
Webinar: Optimizing Packaging’s Impact in the Supply Chain

For more information, please contact
Tom Blanck: tblanck@chainalytics.com

Questions?

Supply Chain Management Series (SCMS) Series

Optimizing Packaging’s Impact in the Supply Chain

Sept 1-2, 2015 | Georgia Tech Global Learning Center

www.scl.gatech.edu/opisc

Georgia Tech Supply Chain & Logistics Institute

http://www.youtube.com/gtscl