

LEAN WAREHOUSING

Cutting waste and improving warehouse efficiencies with the proven principles of lean management.

Your Presenter

Brad Bossence

Regional Vice President LeanCor Supply Chain Group

Supply Chain Consultant, Educator

bbossence@leancor.com

Career Focus Areas:

Entire career committed to third party logistics. Over 17 years of third party logistics experience with a specific focus in Japanese production system environments such as Toyota USA, Toyota Canada, Toyota Europe, Kubota, Yamaha, Suzuki, and Subaru.

Vice President, LeanCor Supply Chain Group:

LeanCor is a trusted supply chain partner that delivers operational improvement and measureable financial results. Unlike other 3PL providers, LeanCor offers a unique combination of training, consulting, and outsourced logistics services. "We *Teach*. We *Consult*. We *Do*."

Lean Supply Chain Instructor:

Georgia Tech Supply Chain and Logistics Institute

Cross-Industry Experience:

Automotive, Consumer Goods, Industrial Manufacturing, Retail, Food and Beverage

Lean Warehousing Assessment Results

Assessment participants rated themselves on a scale of 1-3-5 on 27 statements:

UNSTABLE – No formal process or expectation in place

FUNCTIONAL – Process exists, but it is loosely followed and rarely improved upon.

HIGH PERFORMANCE - Formal process in place that is followed with discipline and continuously improved upon

Lean Warehousing Assessment Results

How Assessment Participants are Performing on Average Per Category:

Assessment Results

Assessment Area	Average Score
Our warehouse processes operate to the pace of customer demand.	3.9
Team members are encouraged to share best practices.	3.4
We manage a formal, behavior-based safety program.	3.4
Our facility is designed with safety as a priority (including equipment, ergonomics, and processes.)	3.4
Daily stand up meetings for each shift provide visibility to current conditions and learning.	3.4
Leaders spend time on the floor and engage in active problem solving with all team members in the operation.	3.3
We are committed to standard work, starting with leaders and extending to each team member.	3.2
Our KPIs are visible to all and can communicate the status of the operation's performance at any given time.	3.2
We engage in isolating key failure modes (or areas of defects).	3.2
Warehouse functions operate on a pull replenishment method – from the inbound supply base to outbound customers.	3.2
We know asset requirements in terms of facilities, infrastructure, and equipment. We leverage this information to ensure optimal uptime and asset utilization. We consider the impacts of scheduled and unscheduled worker time off in our	
labor resourcing.	3.1
We have a strong 5S system with regular discipline and floor-wide training.	3.0
We consider the total cost of fulfillment in our decision making.	3.0
Visual management in the facility enables team members to see, know, and act as a group.	3.0

Assessment Results

Assessment Area	Average Score
Customer expectations are visible and understood by all warehouse team members.	3.0
Team members are developed through formal training programs.	3.0
We have developed a quality dashboard from which to monitor performance.	2.9
We have a balanced personnel ratio target allowing flexibility to ramp up and down based on production demands.	2.8
Ne focus on the standardization of dunnage such as pallets and returnable containers.	2.8
Narehouse functions are connected to the inbound and outbound supply chain processes of the organization; we are focused on flow and speed as opposed to storage and stop-and-go strategies.	2.7
Warehouse strategy is driven by inventory strategy.	2.7
Regular Gemba walks occur to identify waste in the warehouse.	2.7
Ne use process and takt time to determine the number of resources (people and equipment) for the warehouse.	2.6
All team members engage in a formal problem solving process for continuous improvement	2.5
We level demand over available working time in the warehouse.	2.4
We implement poke yokes to error proof processes and prevent defects from happening.	2.3
We focus on standardization of products such as isolating and eliminating the cost of SKU complexity.	2.3
Georgia Supply Chain & LeanCor &	

Stewart School of Industrial & Systems Engineering

SUPPLY CHAIN GROUP ____ ©LeanCor 2014

The Lean Warehouse

Poll: Do you teach Lean and OpEx principles to all members of your warehousing organization?

Lean Fulfillment Stream: Guiding Principles

- 1. Make consumption visible throughout the fulfillment stream
- 2. Reduce lead time to enable pull and reduce inventory
- 3. Create level flow to reduce variation and enable stability
- 4. Use pull systems to reduce complexity and over production
- 5. Collaborate, solve problems and focus on process discipline
- 6. Increase velocity to drive flexibility to meet customer demand
- 7. Lead and make decisions based on Total Cost of Fulfillment

Why? To eliminate all waste so that only value remains for the customer.

DLeanCor 2014

Opportunity #1:

"Regular Gemba walks occur to identify waste in the warehouse."

- To experience a situation first hand where value is being added
- To deeply understand what the customer wants and turn it into a remarkable experience
- To engage with other employees in improving the process and eliminating waste

Average Score: 2.7

Opportunity #2:

"We use process and takt time to determine the number of resources (people and equipment) for the warehouse."

Unload Takt Time & Work Planning Calculation Takt Time = Available Time / Demand											
Daily Demand - Trailers	100	Trailers									
Shift Statistics											
Schedule Work Minutes / Shift	480	Minutes									
Number Shifts Per Day	2	Minutes									
Lunch Minutes	30	Minutes									
Breaks	30	Minutes									
Total Working Time / Day	840	Minutes									
Takt Time = Available Time / Demand	8.4	Minutes / Trailer									
Standard Work Process Times											
	-	Minutes									
Review shipping documents	5	Minutes									
Review shipping documents Unload trailer	5 10	Minutes									
	-										
Unload trailer	10	Minutes									
Unload trailer Inspect material and check to Bill of Lading	10 5	Minutes Minutes									
Unload trailer Inspect material and check to Bill of Lading Move material to storage location	10 5 25	Minutes Minutes									
Unload trailer Inspect material and check to Bill of Lading Move material to storage location File paperwork	10 5 25 5	Minutes Minutes Minutes Minutes									

Georgia

lech

Supply Chain &

Logistics Instit

Stewart School of Industrial & Systems Engineering

- Stabilize demand flow
- Stabilize process
 times
- Level out activity throughout the day
- Requires visibility to activities outside of the 4 walls

Average Score: 2.6

Opportunity #3:

"All team members engage in a formal problem solving process for continuous improvement."

- Drives operational initiatives forward
- → Lean Leaders: respect for people
- Investment in people builds a strong foundation for the future
- Improvement projects can yield major returns and elevated customer service

Average Score:
2.5

	Supplier Name	Part Number									
	Problem Definition:										
	(who,what, when where and how)										
-	3 Legged 5 W	/hy									
	Problem Description:										
eated	Explain why the problem occurred:										
How problem was created	Ŵhy: ↓										
oblem	Why:										
low pr	Why:										
т	Why:(The root cause of non conformance)										
ćp	Problem Description:										
etecte	Explain why the problem was not detected:										
s not d	Why:										
em wa	Why:										
Why problem was not detected?	Why:										
Why	Why: ↓										

Opportunity #4:

"We level demand over available working time in the warehouse."

Unload Takt Time &	Work	Planning Cal	culatio	n							
Takt Time = Available Time / Demand What if ?											
	Demand		Demand	Demand	Demand						
Daily Demand - Trailers	40	Trailers	60	60	80						
Schedule Work Minutes / Shift	480	Minutes	480	480	480						
Number Shifts Per Day	2	Minutes	2	2	2						
Lunch Minutes	30	Minutes	30	30	30						
Breaks	30	Minutes	30	30	30						
Total Downtime Per Shift	60	Minutes	60	60	60						
Total Working Time / Day	840	Minutes	840	840	840						
Takt Time - Trailer Unloading	21	Minutes Per Trailer	14	14	10.5						
Standard Work - Trailer Unload Process Time	45	Minutes	45	30	60						
Total Work Demand Minutes - Per Day	1800	Minutes	2700	1800	4800						
Avialable Time Per Team Member - Per Shift	420	Minutes	420	420	420						
Optimal Number of Team Members	4.3	Team Members	6.4	4.3	11.4						
Optimal Team Members Per Shift	2.1	Team Members	3.2	2.1	5.7						
# Unloading Doors Required	2.1	Doors	3.2	2.1	5.7						
# Lift Trucks Required	2.1	Lift Trucks	3.2	2.1	5.7						

Average Score:

2.4

Shipping Schedule As The Pace Setter

Disciplined Yard Management

Yard Spot		Su	opliers		5:30	6:00	6:30	2:00	8:00	8:30	9:00	9:30	10:00	10:30		- 0	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16.30	17:00	17:30	18:00	18:30	19:00	19:30		20:30	22:00	22:30	23:00	23:30	0:00	0:30	1:00	1:30	00 7	railer Return
MR01	Sup1	Sup2	Sup3			A) U	LR																		1978	2								H	- 210
MR02	Sup4	Sup5	Sup6	Sup7		/	4						D	UL	R																										Н	- 211
MR03	Sup8	Sup9	Sup10						А	· · · · ·						D	UL	R		2						0				2.02		10.00	2								H	- 212
MR04	Sup11	Sup12								A							D	UL	R																						Н	- 213
MR05	Sup13	Sup14	Sup15									P	A	-					C) U	LR																				Ξ	- 214
MR06	Sup16	Sup17	Sup18	Sup19										A						D	U	L R		_												\square					H	- 215
MR07	Sup20	Sup21	Sup22		2		0								- 88	А							D	UL	R							3.2									Н	- 216
MR08	Sup23	Sup24	Sup25	Sup26									0		0.000		А		_	2				D	UL	R							8								Н	- 217
MR09	Sup27	Sup28																1	Ą								D	UL	R												Н	- 201
MR10	Sup29																	1	A	(-	-						D	ULI	۲											Н	- 202
MR11	Sup30																				A) U	LR			_	\square					Н	- 203
MR12	Sup31	Sup32	Sup33		8		¢.								- 00								0	А		8						3.2									Н	- 204
MR12	Sup31	Sup32	Sup33																					А									D	UL	R	\square		-			H	- 205
MR13	Sup35	Sup36																															A					DI	UL R	2	Н	- 206
2	A	Route Arr	ival		5	· · · · ·				· · · ·																· · · · ·												_				
17 mil	D	Deliver Tr	ailer to Dock	Door																																						
Key	UL	Unioad Tr	ailer																																							
	R	Return Tr	ailer to Yard																																							

Opportunity #5:

"We implement poke yokes to error proof processes and prevent defects from happening."

No Controls	Direction	Standard Work	Visual Management	Inspection	Stop Process	Avoidance
		Awareness	•	Det	tection	Prevention

- → To error is human...all humans!
- People want to have quality in their work
- Errors turn into defects only if they are passed on
- → Only 100% inspection will drive 100% error free
- People cannot accomplish 100% inspection

-1-1-1			
A. P. L.	Confirm	File Delete	×
/./	6	Are you sure you want to delete 'This File'?	
		<u>Y</u> es <u>N</u> o	

Opportunity #6:

"We focus on standardization of products such as isolating and eliminating the cost of SKU complexity."

Traditional ABC										
SKU	Quarterly Volume	Percent of Total	Cumulative Percent	Stratification						
1	4800	48%	48%	А						
D	1400	14%	61%	А						
в	900	9%	70%	А						
G	900	9%	79%	В						
А	660	7%	86%	В						
F	630	6%	92%	С						
С	600	6%	98%	С						
E	120	1%	99%	С						
н	72	1%	100%	С						
Totals	10082	100%								

Flow ABC											
SKU	Quarterly Volume		Flow Stratification	Traditional ABC							
С	600	0.0	А	С							
G	900	0.0	А	В							
Н	72	0.1	Α	С							
E	120	0.2	В	С							
F	630	0.3	В	С							
Α	660	0.8	В	В							
В	900	1.0	С	А							
D	1400	1.5	С	А							
	4800	2.3	С	А							
Totals	10082										

Georgia Supply Chain &

Logistics Institute

Stewart School of Industrial & Systems Engineering

Tech

The Costs of Carrying Inventory

Inventory Carrying Costs												
Raw Materials		\$13,000,000.00	ADOH									
Work in Process		\$ 2,000,000.00	ADOH									
Finished Goods		\$25,000,000.00	ADOH									
Total Average Days on H	land	\$40,000,000.00	ADOH									
	% Of	Avg Days on Han	d									
Cost of Capital	7%	of Avg ADOH	\$2,800,000.00									
Administrative Overheads	2%	of Avg ADOH	\$ 800,000.00									
Excess Transportation	2%	of Avg ADOH	\$ 800,000.00									
Excess Space	2%	of Avg ADOH	\$ 800,000.00									
Obsolescence	2%	of Avg ADOH	\$ 800,000.00									
Shrinkage	1%	of Avg ADOH	\$ 400,000.00									
Damage	1%	of Avg ADOH	\$ 400,000.00									
Insurance	1%	of Avg ADOH	\$ 400,000.00									
Technology - Systems	1%	of Avg ADOH	\$ 400,000.00									
Taxes	1%	of Avg ADOH	\$ 400,000.00									
Total Inventory Costs	20%	of Avg ADOH	\$ 8,000,000.00									

Lean Warehousing: Continue Your Learning!

Webinar Attendees Can Use 20% Discount Code: Leanw14

September 23-25 | Georgia Tech Supply Chain and Logistics Institute (Atlanta, GA)

Learn how to:

- Isolate the key elements of lean thinking to be used in the warehouse
- Value stream map warehouse operations
- Utilize lean tools to reduce waste in the warehouse
- Create a warehouse operation based on visual management and real time problem solving
- Reduce inventories in warehouse operations
- Create collaboration between warehousing and other functional areas
- → To use discount code, call: 404-894-2343

Learn more: <u>http://www.scl.gatech.edu/professional-education/on-campus-courses/course.php?id=leanwh</u>

Thank You!

Q&A

bbossence@leancor.com

Learn how to apply lean to your inbound logistics!

Lean Inbound Logistics

Sept. 29-30, 2014 Savannah, GA *Tour the TARGET DC!* <u>http://www.scl.gatech.edu/</u>

