Webinar: Lean Warehousing

Brad Bossence
Vice President of Consulting
LeanCor Supply Chain Group
Instructor, Georgia Tech SCL
bbossence@leancor.com

Distribution Operations Analysis and Design (DOAD) Certificate

Lean Warehousing

www.scl.gatech.edu/leanwh

October 20-22, 2015
Georgia Tech Global Learning Center

Our Presenter: Brad Bossence

Vice President of Consulting LeanCor Supply Chain Group

bbossence@leancor.com

Instructor, Georgia Tech Supply Chain and Logistics Institute (GTSCL)

Career Focus:

Nearly 20 years of third party logistics and consulting experience with a specific focus in Lean and Japanese production system environments, including contract and operations management positions across the globe

Currently Responsible For:

Leading supply chain consulting projects for LeanCor customers in a wide array of sizes and industries. These have included lean warehousing implementation, warehouse layout and design, and ROI assessments

Industry Group Speaker:

AME, CSCMP, WERC, GTSCL, Institute of Industrial Engineers, Lean Enterprise Institute, Georgia Center for Logistics, Honda Lean Network

Partners

- Lean Quest and LeanCor have formed a partnership, bringing our logistics and supply chain and warehousing experience together to bring this class to you
- Our professional roots are in Toyota. There we learned how to apply the Toyota Production System (TPS) from Toyota Experts from Japan
- During the last 20 years we've implemented and taught Lean to 100's of operations around the world. Some of our clients are shown below.

What is Lean?

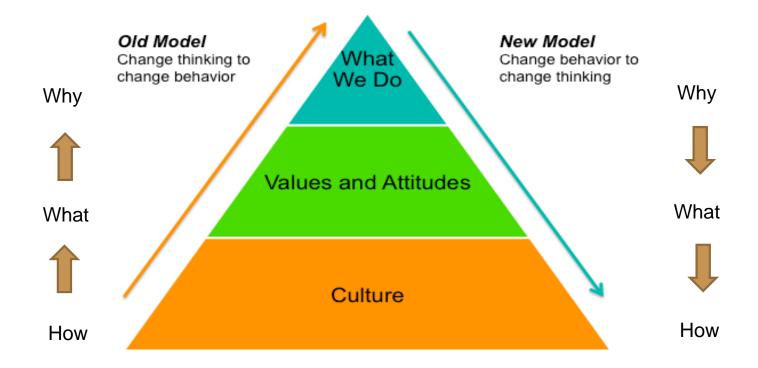
Toyota's Purpose Statement:

"To eliminate waste and satisfy customer needs at the lowest possible cost with consideration and respect for humanity of employees." - Τ. Ohno

What Does That Mean?

- We will embrace common principles to drive a problem solving culture
- We will teach our people how to identify and eliminate the root cause of wasteful processes

Results?

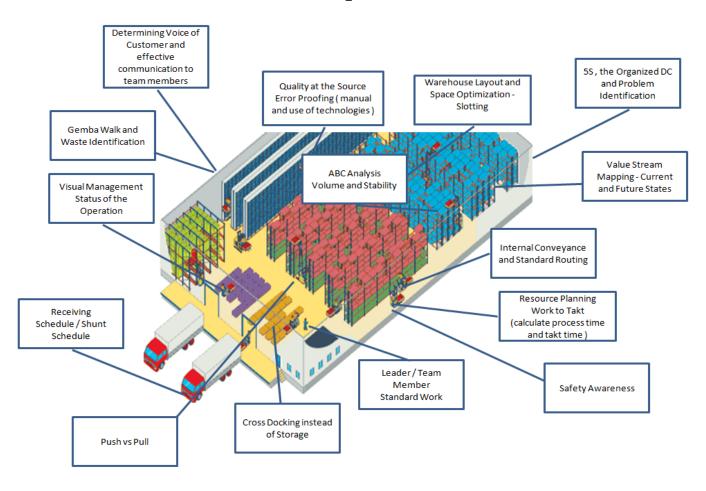

- We will improve efficiencies by driving out preventable costs
- We will improve revenues by achieving outstanding customer service (Quality, Delivery, Cost)

How Does this Connect to Warehousing??

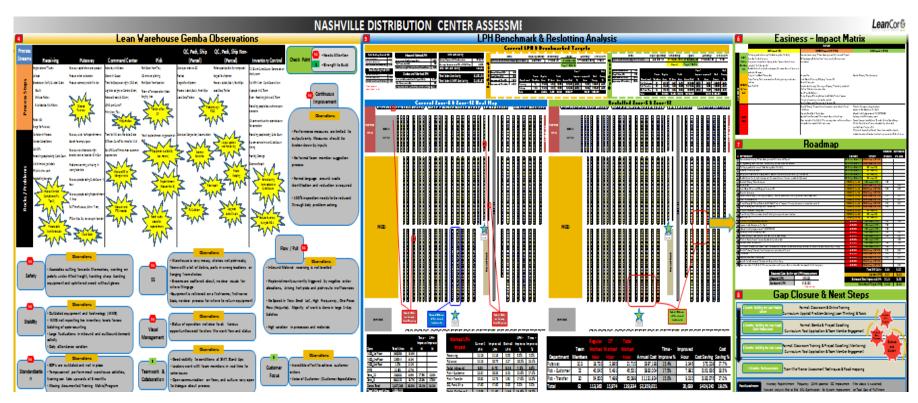
Cultural Perspectives

Respect for:
Purpose, People, Process, Problem Solving, Results

Why Do We Need Warehouses? What is Our Purpose?


- Customer Service Fill Rate Policies
- 2. Production Lot Sizes
- 3. Transportation Economies
- 4. Purchasing Economies & Hedging
- 5. Demand Variability: Seasonality, Spikes, New Product Launches
- 6. Cycle Stock; Buffer Stock: Safety Stock: Raw Material: WIP: FG
 - a) Lead Time
 - b) Supplier Dependability
 - c) Transportation Dependability
 - d) Customer Dependability

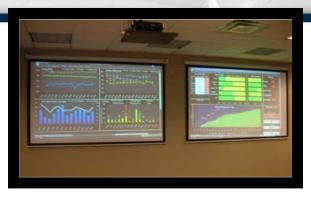
Is a retail store a warehouse?
Imagine if everything we buy is built to order....
No grocery store, no box store...
How would this effect our daily lives?



The Lean Warehouse and Operational Excellence

Assessment Example:

The Usual Suspects are: Inventory Right Sizing, Layout, Problem Solving

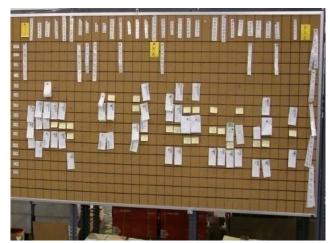


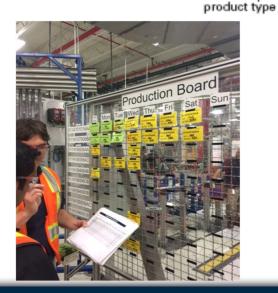
What are your key performance driver(s) in the warehouse?

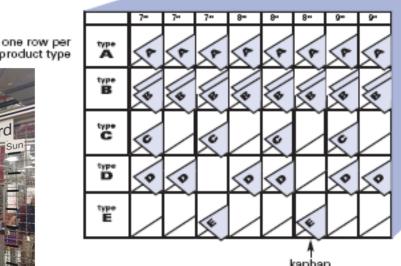
Lean Thinking 101: Entropy and Plan-Do-Check-Adjust

We Must Add Pressure to Make Problems Visible 1st in 10, Do it Again

Everything Starts with a Plan






Leveled Flow Tool: Heijunka

Consistently levels demand by short time increments and mix (i.e. ensures that product D and E in the example are produced in a steady ration with small batch sizes).

Takt Time

→ Takt time is the drum beat to the process. Each process should be delivering product at this set time, acting in a rhythm that is synchronized with customer demand.

Takt Time = Daily Operating Time / Required Qty Per Day

Example:

- Resources: 1 person on each shift
- Demand: Unload 100 trucks per day
- Operating Time: 2 shifts per day
 - 1 shift = 420 working minutes (excludes breaks)

- Process Time to Unload a Truck: 50 minutes
- What is the takt time?
- How many people do we need per shift?

Resource Allocation

Unload Takt Time & Work Planning Calculation Takt Time = Available Time / Demand			
Daily Demand - Trailers	100	Trailers	
Shift Statistics			
Schedule Work Minutes / Shift	480	Minutes	
Number Shifts Per Day	2	Minutes	
Lunch Minutes	30	Minutes	
Breaks	30	Minutes	
Total Working Time / Day	840	Minutes	
Takt Time = Available Time / Demand	0.4	Minutes / Trailer	
Takt Tille - Available Tille / Delilaliu	8.4	Minutes / Trailer	
Standard Work Process Times	8.4	minutes / Trailer	
	5	Minutes / Trailer Minutes	
Standard Work Process Times			
Standard Work Process Times Review shipping documents	5	Minutes	
Standard Work Process Times Review shipping documents Unload trailer	5 10	Minutes Minutes	
Standard Work Process Times Review shipping documents Unload trailer Inspect material and check to Bill of Lading	5 10 5	Minutes Minutes Minutes	
Standard Work Process Times Review shipping documents Unload trailer Inspect material and check to Bill of Lading Move material to storage location	5 10 5 25	Minutes Minutes Minutes Minutes	
Standard Work Process Times Review shipping documents Unload trailer Inspect material and check to Bill of Lading Move material to storage location File paperwork	5 10 5 25 5	Minutes Minutes Minutes Minutes Minutes Minutes	

Visual Management & Associate Engagement

Outbound Productivity

Receiving Productivity

Make Takt Time Visible

ABC Analysis - Traditional vs. Flow

Traditional ABC				
SKU	Quarterly Volume	Percent of Total	Cumulative Percent	Stratification
- 1	4800	48%	48%	Α
D	1400	14%	61%	Α
В	900	9%	70%	Α
G	900	9%	79%	В
Α	660	7%	86%	В
F	630	6%	92%	С
С	600	6%	98%	С
E	120	1%	99%	С
н	72	1%	100%	С
Totals	10082	100%		

A's - By Volume -
Cumulative 70% of
volume
B's - By Volume -
Cumulative 70 % to
90% of volume
C's - By volume -
Cumulative 90% to
100% of volume

Flow ABC				
SKU	Quarterly Volume	I	Flow Stratification	Traditional ABC
С	600	0.0	Α	С
G	900	0.0	Α	В
Н	72	0.1	Α	С
E	120	0.2	В	О
F	630	0.3	В	С
Α	660	0.8	В	В
В	900	1.0	C	Α
D	1400	1.5	С	Α
I	4800	2.3	C	Α
Totals	10082			

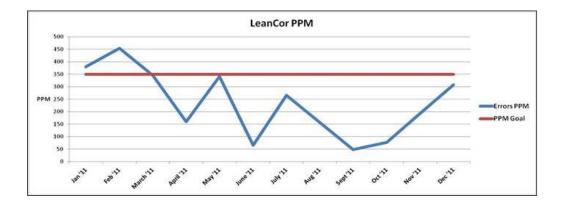
A's - Continuous
Flow - C of Variation
< .0.2
B's - Pull - C of
Variation > 0.2 and <
1.0
C's - JIT - Make to
Order - C of Variation
> 1.0

Lean Thinking 102: Inputs and Outputs

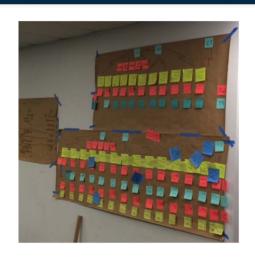
- The Lean Problem Solver needs to be a **process thinker**.
- If we have a "problem", or our Y is not meeting the standard, then we need to review our inputs (x's) to understand which is the true driver (or root cause).

$$Y = f(x)$$

- What is a Principle?
-Are Principles "Inputs"?
- ... What are your examples of Lean Warehousing Principles?



Lean Leaders "Go See and Do"

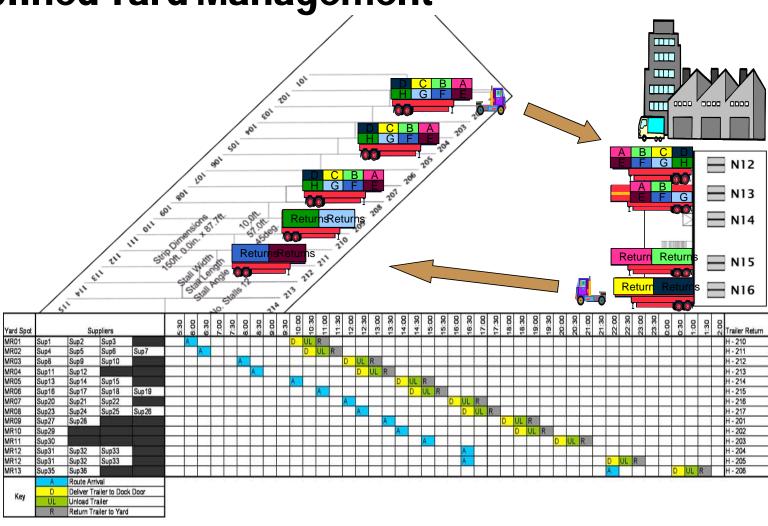

Problem Solving is a Language

Operate	Do the Work & Identify the Problem
Ope	Plan & perform the work. Identify gap between plan vs. actual condition.
Review	Define the Problem
Rev	Document & validate current state. Develop a clearly defined problem statement.
ırn	Determine Root Cause
Learn	Identify all possible causes to the problem. Isolate critical few root causes to the problem.
mize	Identify Solutions
Optimize	Develop solutions that address the root causes to the problem. Ensure the solutions support the entire value-stream.
Execute	Implement & Sustain the Solution
Ехе	Communicate, train, and Implement the solution. Measure and monitor the impact of the solution.

Mapping the Current State. Teach Everyone to See Waste.

Pareto (80-20) Principle

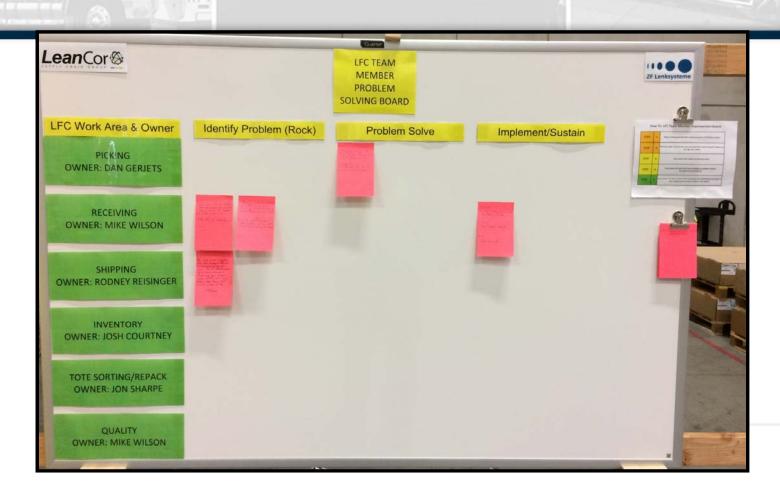
Fishbone Diagram


5 Why

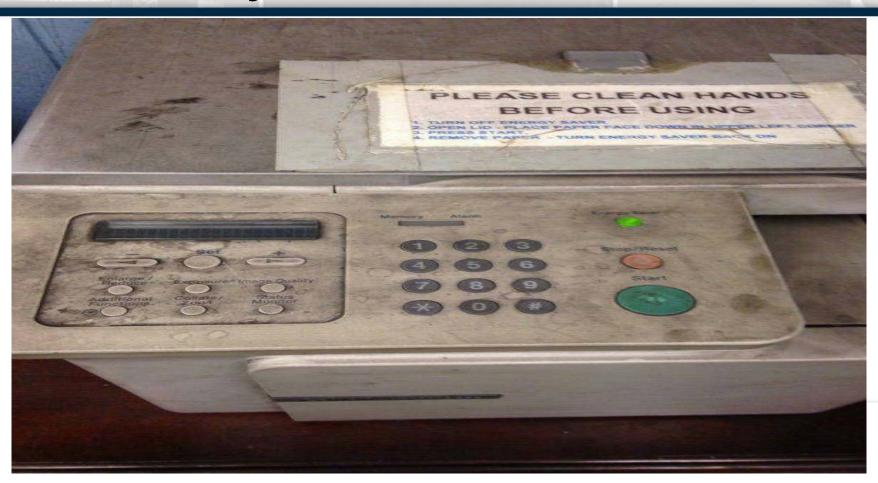
..and use simple problem solving tools

Disciplined Yard Management

Measurement System Comparisons


Lean Measurement Systems	Traditional Measurement Systems
Data are real time or very recent	Data are mostly historical – longer in term
Heavy focus on customer expectations	Heavy focus on utilization of resources
Focuses on cross-functional processes	Measures functional silos
Everyone's responsibility	Owned and controlled by silo owners
Improvement focused – better every day	Goal focused – hit it or miss it
Measures are visible to many	Reports are discussed in meetings
Primarily based on process inputs	Primarily based on results
Adapted & customized for the process	Copied from other sources
Gives clear direction to act on	Identifies who to blame or reward
Simple measures managed by operators	Complex measures in sophisticated BIS

Where does your organization rank: Left or Right?



Problem Solving Board / VISIBLE Associate Suggestion System

What Does This Tell You? Do You Think They Will Succeed in the Future State??

Thank You! Questions?

Brad Bossence

bbossence@leancor.com

678.876.9009

Let's connect on **Linked** in.

Webinar: Lean Warehousing

Thank You

for attending

Distribution Operations Analysis and Design (DOAD) Certificate

Lean Warehousing

www.scl.gatech.edu/leanwh

October 20-22, 2015

Georgia Tech Global Learning Center

