
Combinatorial testing problems



the problem

A hypothesis testing problem.
One observes X = (X1, . . . ,Xn).
Null hypothesis: the components of X are i.i.d. standard normal.
Alternative hypothesis: We have a class C = {S1, . . . , SN} of
sets Sk ⊂ {1, . . . , n}.
Under H1, there exists an S ∈ C such that

Xi has distribution

{
N (0, 1) if i /∈ S
N (µ, 1) if i ∈ S

The components of X are independent.
The distribution of X is denoted by PS .
Assume that |S| = k for every S ∈ C.



examples
the set of all subsets S ⊂ {1, . . . , n} of size k (classical
multiple testing, e.g., Ingster (1999), Baraud (2002), Donoho
and Jin (2004))
set of all paths in a square grid (Arias-Castro et al., 2008)



examples

set of all clusters of a certain structure on a grid
(Arias-Castro, Candès, and Durand, 2009)

the set of all cliques of a given size in a complete graph;

the set of all bicliques of a given size in a complete bipartite
graph; (exploratory analysis of microarray data, see Shabalin,
Weigman, Perou, and Nobel, 2009)

the set of all spanning trees of a complete graph;

the set of all perfect matchings in a complete bipartite graph;



the risk
A test is a function f : Rn → {0, 1}.
If f (X ) = 0 then the test accepts the null hypothesis.
The risk of f is

R(f ) = P0{f (X ) = 1}+
1

N

∑
S∈C

PS{f (X ) = 0}.

The optimal test is easy to determine: if xS =
∑

i∈S xi ,

f ∗(x) =

 0 if
1

N

∑
S∈C

eµxS−kµ2/2 ≤ 1

1 otherwise.

The optimal risk is

R∗ = R∗C(µ) = 1−
1

2
E0|L(X )− 1|

where L(X ) = 1
N
∑

S∈C eµXS−Kµ2/2 is the likelihood ratio where
XS =

∑
i∈S Xi .



averaging test

Compute the average and threshold:

f (x) = 1{
∑n

i=1 Xi>µk/2} .

Then for any δ > 0, R(f ) ≤ δ whenever

µ ≥
√

8n
k2

log
2

δ
.

Surprisingly, this simple test is nearly optimal in many cases.



scan statistic

Another simple test is

f (x) = 1 if and only if max
S∈C

XS ≥
µk + E0 maxS∈C XS

2
.

Then R(f ) ≤ δ whenever

µ ≥
E0 maxS∈C XS

k
+ 2

√
2

k
log

2

δ
.

This is an easy consequence of Tsirelson’s Gaussian concentration
inequality.



lower bounds

Let S and S ′ be drawn independently, uniformly, at random from
C and let Z = |S ∩ S ′|. Then

R∗ ≥ 1−
1

2

√
Eeµ2Z − 1 .

Proof.

R∗ = 1−
1

2
E0|L(X )− 1| ≥ 1−

1

2

√
E0|L(X )− 1|2

Since E0L(X ) = 1,

E0|L(X )− 1|2 = Var0(L(X )) = E0[L(X )2]− 1 .



a lower bound for gaussian processes

Let µC be such that

E exp
(
µ2
CZ
)

= 2 .

Then for all µ ≤ µC,

R∗ ≥
1

2
.

But recall from the scan statistic test that R∗ < 1/2 whenever

µ ≥
E0 maxS∈C XS

k
+

4
√

k
.

This implies that

E0 max
S∈C

XS ≥ kµC − 4
√

k .



negative association

Assume that the class C is symmetric. Suppose that
S ′ = {1, 2, . . . , k} ∈ C and let S be a randomly chosen from C.
If the random variables 1{1∈S}, . . . ,1{k∈S} are negatively
associated then R∗ ≥ 1/2 whenever

µ ≤

√
log

(
1 +

n log 2

k2

)
.

These tools allow us to determine the order of the critical µ in
various applications.



examples: k-sets
Consider the class C of all sets of size k . Thus, N =

(n
k

)
.

This example is well–understood, see, e.g., Ingster (1999), Baraud
(2002), Donoho and Jin (2004).
We have negative association, so R∗ ≥ 1/2 whenever

µ ≤

√
log

(
1 +

n log 2

k2

)
.

Various regimes. Since

E0 maxS∈C XS

k
≤

√
2k log

(n
k

)
k

≤

√
2 log

(
ne
k

)
,

the scan test shows that for k = O
(
n(1−ε)/2

)
for some ε > 0,

then the threshold value is of the order of
√

log n.
When k2/n, is bounded away from zero, then the averaging test
provides a matching upper bound.



perfect matchings

Let C be the set of all perfect matchings of the complete bipartite
graph Km,m.

By the the averaging test, R(f ) ≤ 1/2 whenever µ ≥
√

8 log 4.



perfect matchings

Z = |S ∩ S ′| is the number of fixed points in a random
permutation.
Then R∗ ≥ 1/2 whenever

µ ≤
√

log(1 + log 2) .

The optimal test f ∗ can be computed efficiently: computing

1

N

∑
S∈C

eµXS =
1

m!

∑
σ

m∏
j=1

eµX(i ,σ(i))

is equivalent to computing the permanent of a non-negative
m ×m matrix. Jerrum, Sinclair, and Vigoda (2004) show that
this may be done by a polynomial-time randomized approximation.



spanning trees

Let C be the class of all spanning trees of the complete graph Km.

n =

(
m
2

)
k = m − 1 N = mm−2 .

Negative association holds by a result of Feder and Mihail (1992).

R∗ ≥ 1/2 whenever

µ ≤

√
log

(
1 +

log 2

2

)
.

The likelihood ratio (1/N)
∑

S∈C eµXS may be computed by the
Propp-Wilson (1998) algorithm.



cliques

Let C contain all cliques of size k of the complete graph Km.

Negative association doesn’t hold anymore.



cliques

Assume k ≤
√

m(log 2)/e. Then
(i) R∗ ≤ 1/2 whenever

µ ≥ 2

√
1

k − 1
log

(
me
k

)
+ 4

√
log 4

k(k − 1)
,

(ii) R∗ ≥ 1/2 whenever

µ ≤

√
1

k
log

(
m
2k

)
.

Upper bound holds by scan test. Both scan test and optimal test
are difficult to compute.



bi-cliques

A similar model, relevant in the exploratory analysis of microarray
data (Shabalin, Weigman, Perou, and Nobel, 2009):
C contains all bi-cliques of size k of the complete bipartite graph
Km,m.
Then n = m2, K = k2, and N =

(m
k

)
.

The analysis and results are similar to the case of cliques.



research problem: sharp threshold?

The optimal risk R∗ = R∗C(µ) is a decreasing function of µ.

For what classes is there a sharp threshold?

If µa is such that R∗C(µ) = a, is it true that

µε − µ1−ε = o(µ1/2) as k →∞?



detection of correlations

n sensors receive noisy signals.

Sensor i receives (Xi ,1, . . . ,Xi ,d ).

If there is no signal, Xi ,t are i.i.d. standard normal.

In the presense of an event, a small subset S ⊂ {1, . . . , n} of
sensors receives a common signal covered by noise:

Xi ,t =

{
Ni ,t if i /∈ S
(Ni ,t + Yt)/

√
1 + ρ if i ∈ S

where Ni ,t are standard normal and Yt are normal (0, ρ)
independent of (ρ� 1).



hypothesis testing problem

One observes d i.i.d vectors X 1, . . . ,X d ∈ Rn.

Under the null hypothesis, the components of X 1, . . . ,X d are
independent.

Under the alternative hypothesis, a subset S of components
(|S| = k � n) has correlation ρ > 0, the rest are independent.

One does not know the (possibly) “contaminated” subset.



tests and their risk

A test is a function f : Rnd → {0, 1}.

f (X 1, . . . ,X d ) = 0 means that the null is accepted.

The risk of a test is

R(f ) = P0{f (X 1, . . . ,X d ) = 1}

+
1(n
k

) ∑
S

PS{f (X 1, . . . ,X d ) = 0}

where P0 is the probability under the null.
PS is the probability if the set of contaminated components is S .
Another measure of risk:

R(f ) = P0{f (X 1, . . . ,X d ) = 1}
+ max

S
PS{f (X 1, . . . ,X d ) = 0}



optimal test

There exists a test f ∗, (likelihood ratio test) with optimal risk
R∗ = R(f ∗).

This test is difficult to compute. Requires calculating a sum of
(n
k

)
terms.



a lower bound

R∗ ≥
1

2
−

1

4

√
exp

(
(eρd − 1)

k2

n

)
− 1 .

(Arias-Castro, Bubeck, Lugosi, 2015)
Proof idea: The bound

R∗ ≥ 1−
1

2

√
E0[L(X )2]− 1

does not work. Instead, we condition on the value of the common
“signal” and treat the problem as shifted means.

If the class of possible “contaminated sets” is not necessarily the
class of all sets of size k , then again R∗ maybe bounded from
below in terms of the moment generating function of
Z = |S ∩ S ′|.



a lower bound

R∗ ≥
1

2
−

1

4

√
exp

(
(eρd − 1)

k2

n

)
− 1 .

If d � (1/ρ) log n, it is impossible to have R∗ → 0 unless
k = n1/2−o(1).

However, if d ≥ (9/ρ) log n, small risk is possible even if k is a
constant.

This can be achieved by a simple test based on a “scan statistic”.



scan statistic

Tn,k,d = max
S

d∑
t=1

∑
i ,j∈S,i 6=j

Xi ,tXj ,t .

The test fn that accepts the null hypothesis if and only if

Tn,k,d ≤ dk(k − 1)ρ/4

has risk R(fn)→ 0 if (k − 1)ρ > 8 and d ≥ (9/ρ) log n.

The proof is based on the analysis of Gaussian quadratic forms.



random correlation graph

Let X i = (Xi ,1, . . . ,Xi ,d ).
For the testing problem, it is natural to calculate pairwise
correlations

(X i ,X i )

‖X i‖ · ‖X j‖

and define a graph by connecting i and j if the correlation is large
enough (e.g., > 0).

In the presence of a signal, one expects a large clique.

What is large?

Under the null hypothesis, the Z i = X i/‖X i‖ are uniformly
distributed on the sphere and we have a random geometric graph
in Rd .



random geometric graph

Model: Let X 1, . . . ,X n be independent vectors, uniform on
Sd−1 = {x ∈ Rd : ‖x‖ = 1}.

For a given p ∈ (0, 1), we define the random geometric graph
G(n, d , p)

Vertex set V = {1, . . . , n}.

i and j are connected by an edge if an only if(
X i ,X j

)
≥ tp,d

where tp,d is such that

P
{(

X i ,X j
)
≥ tp,d

}
= p .

Equivalently, i ∼ j if and only if ‖X i − X j‖ ≤
√

2(1− tp,d ).



edge probability
For p = 1/2, tp,d = 0.

Let µd−1 be the uniform probability measure over Sd−1.
For u ∈ Sd−1 and 0 ≤ t ≤ 1, a spherical cap of height 1− t
around u is

Cd−1(u, t) = {x ∈ Rd : x ∈ Sd−1, (x, u) ≥ t}

t u
1− t

Cd−1(u, t)



edge probability

p = µd−1(Cd−1(e, tp,d )) is the normalized surface area of a
spherical cap of height 1− tp,d .

It is useful to represent

X =
Z
‖Z‖

with Z ∈ Rd standard normal.

Clearly, E‖Z‖2 = d .

Since ‖Z‖ is a Lipschitz function of Z , var(‖Z‖) ≤ 1.

In particular, ‖Z‖/
√

d → 1 in probability.

This implies X1

√
d is approximately standard normal.



edge probability

Consequence: for any s > 0,

µd−1(Cd−1(e, s/
√

d)) = P{X1 > s/
√

d} → 1− Φ(s)

as d →∞.

For any fixed p ∈ (0, 1),

lim
d→∞

tp,d
√

d = Φ−1(1− p) .



very large dimension

G(n, p) denotes the Erdős-Rényi random graph. (n vertices, egdes
are present independently, with probability p.)

Total variation distance between two random graphs G and G ′:

dTV (G ,G ′) = max
G
|P{G ∈ G} − P{G ′ ∈ G}|

where the maximum is over all 2(n
2) sets of graphs over n vertices.

THEOREM. Fix n and p. Then

lim
d→∞

dTV (G(n, d , p),G(n, p)) = 0 .



very large dimension

For the proof, write

P{G(n, d , p) = g} = P

 ⋂
1≤i<j≤n

1{(Xi ,Xj )>tp,d} = gi ,j


= P

 ⋂
1≤i<j≤n

1{
∑

t
√

dXi ,tXj ,t>
√

dtp,d} = gi ,j


and

P{G(n, p) = g} = P

 ⋂
1≤i<j≤n

1{Ni ,j>Φ−1(1−p)} = gi ,j


where the Ni ,j are independent standard normal. The proof follows

from a multivariate central limit theorem.



clique number of G(n, d , 1/2)

For fixed d , the clique number ω(n, d , 1/2) grows linearly with n.
For d =∞ the behavior is very different:

ω(n,∞, 1/2) = 2 log2 n − 2 log2 log2 n + O(1).

How fast does ω(n, d , 1/2) approach the clique number of

G(n, 1/2)?

How large does d need to be for similar behavior?



clique number bounds

if d ∼ const., then ω(n, d , 1/2) = Ωp(n)

if d →∞, then ω(n, d , 1/2) = op(n)

if d = o(log n), then ω(n, d , 1/2) ≥ n1−op(1)

if d ∼ log2 n, then ω(n, d , p) = Op(log3 n) when p < 1/2.

if d � log3 n, then ω(n, d , 1/2) = (2 + op(1)) log2 n

if d ∼ log5 n, then
ω(n, d , 1/2) = 2 log2 n − 2 log2 log2 n + Op(1)

if d ≥ log((2 log 2)n),

ω(n, d , 1/2) ≥ exp
(

log2(n)/(20d)
)
− 1 .



proof ideas

first three statements are easy (from area estimates of a spherical
cap)

fourth follows from Jung’s theorem and Vapnik-Chervonenkis
inequality

Jung’s theorem (1901): For every set A ⊂ Rd of diameter at most
1 there exists a closed ball of radius

√
d/(2(d + 1)) that includes

A.



clique number bounds
the points X i in a clique K form a set of diameter at most√

2(1− tp,d ).

by Jung’s theorem, K is contained in a spherical cap Cd−1(u, sp)
for some u ∈ Sd−1 and sp =

√
(dtp,d + 1)/(d + 1).

ω(d , n, p) ≤ n sup
C=Cd−1(u,sp)

µd−1,n(C) ,

where µd−1,n is the empirical measure.

by Vapnik and Chervonenkis, with probability at least 1− η, for
all C = Cd−1(u, sp),

µd−1,n(C) ≤ 2µd−1(C) +
4(d + 1)

n
ln

2ne
d + 1

+
4

n
ln

4

η
.

and

µd−1,n(C) ≤
1

sp
√

d
e−s2

p(d−1)/2 +
4(d + 1)

n
ln

2ne
d + 1

+
4

n
ln

4

η
.



clique number bounds

if d ∼ const., then ω(n, d , 1/2) = Ωp(n)

if d →∞, then ω(n, d , 1/2) = op(n)

if d = o(log n), then ω(n, d , 1/2) ≥ n1−op(1)

if d ∼ log2 n, then ω(n, d , p) = Op(log3 n) when p < 1/2.

if d � log3 n, then ω(n, d , 1/2) = (2 + op(1)) log2 n

if d ∼ log5 n, then
ω(n, d , 1/2) = 2 log2 n − 2 log2 log2 n + Op(1)

if d ≥ log((2 log 2)n),

ω(n, d , 1/2) ≥ exp
(

log2(n)/(20d)
)
− 1 .



upper bound for d � log3 n

Nk is the number of cliques of size k . For G(n, 1/2),

ENk =

(
n
k

)
2−(k

2)

Let δ > 0 and K > 2. If

d ≥
K3

δ2
,

then, for 1 ≤ k ≤ K ,

ENk(n, d , 1/2) ≤
(

n
k

)
Φ(δ)

(k−1)(k−2)
2 .

Follows from an inductive argument, using approximate
orthogonality of X 1, . . . ,X n.



clique number estimates

The upper bounds for ω(n, d , p) follow from the first moment
method:

P{ω(n, d , 1/2) ≥ k} = P{Nk ≥ 1} ≤ ENk ,

Lower bounds for ω(n, d , p) follow from the second moment
method.
First we prove a similar lower bound for ENk and then show

var(Nk)

(ENk)2
→ 0

for the relevant values of k .



clique number bounds

if d ∼ const., then ω(n, d , 1/2) = Ωp(n)

if d →∞, then ω(n, d , 1/2) = op(n)

if d = o(log n), then ω(n, d , 1/2) ≥ n1−op(1)

if d ∼ log2 n, then ω(n, d , p) = Op(log3 n) when p < 1/2.

if d � log3 n, then ω(n, d , 1/2) = (2 + op(1)) log2 n

if d ∼ log5 n, then
ω(n, d , 1/2) = 2 log2 n − 2 log2 log2 n + Op(1)

if d ≥ log((2 log 2)n),

ω(n, d , 1/2) ≥ exp
(

log2(n)/(20d)
)
− 1 .



lower bound

The lower bound follows from the lower bound for the risk of any
test.

If the largest clique was small then there would exist a test with
small risk.



lower bound

Suppose 0 < ρ ≤ 1/2. Under the alternative hypothesis, with
probability at least 1− δ, the graph contains a clique of size k
whenever (

k
2

)
≤ δ exp

(
dσ4

10

)
,

where σ2 = ρ/(1− ρ).
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