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estimating the mean
Given X1, . . . ,Xn, a real i.i.d. sequence, estimate µ = EX1.

“Obvious” choice: empirical mean

µn =
1

n

n∑
i=1

Xi

By the central limit theorem, if X has a finite variance σ2,

lim
n→∞

P
{√

n |µn − µ| > σ
√

2 log(2/δ)
}
≤ δ .

We would like non-asymptotic inequalities of a similar form.

If the distribution is sub-Gaussian,
E exp(λ(X − µ)) ≤ exp(σ2λ2/2), then with probability at least
1− δ,

|µn − µ| ≤ σ

√
2 log(2/δ)

n
.



estimating the mean
Given X1, . . . ,Xn, a real i.i.d. sequence, estimate µ = EX1.

“Obvious” choice: empirical mean

µn =
1

n

n∑
i=1

Xi

By the central limit theorem, if X has a finite variance σ2,

lim
n→∞

P
{√

n |µn − µ| > σ
√

2 log(2/δ)
}
≤ δ .

We would like non-asymptotic inequalities of a similar form.

If the distribution is sub-Gaussian,
E exp(λ(X − µ)) ≤ exp(σ2λ2/2), then with probability at least
1− δ,

|µn − µ| ≤ σ

√
2 log(2/δ)

n
.



estimating the mean
Given X1, . . . ,Xn, a real i.i.d. sequence, estimate µ = EX1.

“Obvious” choice: empirical mean

µn =
1

n

n∑
i=1

Xi

By the central limit theorem, if X has a finite variance σ2,

lim
n→∞

P
{√

n |µn − µ| > σ
√

2 log(2/δ)
}
≤ δ .

We would like non-asymptotic inequalities of a similar form.

If the distribution is sub-Gaussian,
E exp(λ(X − µ)) ≤ exp(σ2λ2/2), then with probability at least
1− δ,

|µn − µ| ≤ σ

√
2 log(2/δ)

n
.



estimating the mean
Given X1, . . . ,Xn, a real i.i.d. sequence, estimate µ = EX1.

“Obvious” choice: empirical mean

µn =
1

n

n∑
i=1

Xi

By the central limit theorem, if X has a finite variance σ2,

lim
n→∞

P
{√

n |µn − µ| > σ
√

2 log(2/δ)
}
≤ δ .

We would like non-asymptotic inequalities of a similar form.

If the distribution is sub-Gaussian,
E exp(λ(X − µ)) ≤ exp(σ2λ2/2), then with probability at least
1− δ,

|µn − µ| ≤ σ

√
2 log(2/δ)

n
.



empirical mean–heavy tails

The empirical mean is computationally attractive.

Requires no a priori knowledge and automatically scales with σ.

If the distribution is not sub-Gaussian, we still have Chebyshev’s
inequality: w.p. ≥ 1− δ,

|µn − µ| ≤ σ
√

1

nδ
.

Exponentially weaker bound. Especially hurts when many means
are estimated simultaneously.
This is the best one can say. Catoni (2012) shows that for each δ
there exists a distribution with variance σ such that

P
{
|µn − µ| ≥ σ

√
c
nδ

}
≥ δ .



median of means

A simple estimator is median-of-means. Goes back to Nemirovsky,
Yudin (1983), Jerrum, Valiant, and Vazirani (1986), Alon, Matias,
and Szegedy (2002).

µ̂MM
def
= median

 1

m

m∑
t=1

Xt , . . . ,
1

m

km∑
t=(k−1)m+1

Xt



Lemma
Let δ ∈ (0, 1), k = 8 log δ−1 and m = n

8 log δ−1 . Then with
probability at least 1− δ,

|µ̂MM − µ| ≤ σ

√
32 log(1/δ)

n
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proof

By Chebyshev, each mean is within distance σ
√

4/m of µ with
probability 3/4.

The probability that the median is not within distance σ
√

4/m of
µ is at most P{Bin(k, 1/4) > k/2} which is exponentially small
in k .



median of means

• Sub-Gaussian deviations.

• Scales automatically with σ.

• Parameters depend on required confidence level δ.

• See Lerasle and Oliveira (2012), Hsu and Sabato (2013),
Minsker (2014) for generalizations.

• Also works when the variance is infinite. If
E
[
|X − EX |1+α

]
= M for some α ≤ 1, then, with

probability at least 1− δ,

|µ̂MM − µ| ≤
(

8
(12M)1/α ln(1/δ)

n

)α/(1+α)



why sub-Gaussian?

Sub-Gaussian bounds are the best one can hope for when the
variance is finite.

In fact, for any M > 0, α ∈ (0, 1], δ > 2e−n/4, and mean
estimator µ̂n, there exists a distribution E

[
|X − EX |1+α

]
= M

such that

|µ̂n − µ| ≥
(

M1/α ln(1/δ)

n

)α/(1+α)

.

Proof: The distributions P+(0) = 1− p,P+(c) = p and
P−(0) = 1− p,P−(−c) = p are indistinguishable if all n
samples are equal to 0.



why sub-Gaussian?

This shows optimality of the median-of-means estimator for all α.

It also shows that finite variance is necessary even for rate n−1/2.

One cannot hope to get anything better than sub-Gaussian tails.
Catoni proved that sample mean is optimal for the class of
Gaussian distributions.



multiple-δ estimators

Do there exist estimators that are sub-Gaussian simultaneously for
all confidence levels?

An estimator is multiple-δ -sub-Gaussian for a class of distributions
P and δmin if for all δ ∈ [δmin, 1), and all distributions in P ,

|µ̂n − µ| ≤ Lσ

√
log(2/δ)

n
.

The picture is more complex than before.
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known variance

Given 0 < σ1 ≤ σ2 <∞, define the class

P [σ2
1,σ

2
2]

2 = {P : σ2
1 ≤ σ

2
P ≤ σ

2
2.}

Let R = σ2/σ1.

• If R is bounded then there exists a multiple-δ -sub-Gaussian
estimator with δmin = 4e1−n/2 ;

• If R is unbounded then there is no multiple-δ -sub-Gaussian
estimate for any L and δmin → 0.

A sharp distinction.
The exponentially small value of δmin is best possible.
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construction of multiple-δ estimator

Reminiscent to Lepski’s method of adaptive estimation.

For k = 1, . . . ,K = log2(1/δmin), use the median-of-means
estimator to construct confidence intervals Ik such that

P{µ /∈ Ik} ≤ 2−k .

(This is where knowledge of σ2 and boundedness of R is used.)
Define

k̂ = min

k :
K⋂

j=k

Ij 6= ∅

 .

Finally, let

µ̂n = mid point of
K⋂

j=k̂

Ij



proof

For any k = 1, . . . ,K ,

P{|µ̂n − µ| > |Ik |} ≤ P{µ /∈ ∩K
j=k Ij}

because if µ ∈ ∩K
j=k Ij , then ∩K

j=k Ij is non-empty and therefore

µ̂n ∈ ∩K
j=k Ij .

But

P{µ /∈ ∩K
j=k Ij} ≤

K∑
j=k

P{µ /∈ Ij} ≤ 21−k



higher moments

For η ≥ 1 and α ∈ (2, 3], define

Pα,η = {P : E|X − µ|α ≤ (η σ)α} .

Then for some C = C(α, η) there exists a multiple-δ estimator
with a constant L and δmin = e−n/C for all sufficiently large n.



k-regular distributions

This follows from a more general result:
Define

p−(j) = P


j∑

i=1

Xi ≤ jµ

 and p+(j) = P


j∑

i=1

Xi ≥ jµ

 .

A distribution is k-regular if

∀j ≥ k, min(p+(j), p−(j)) ≥ 1/3.

For this class there exists a multiple-δ estimator with a constant L
and δmin = e−n/k for all n.



multivariate distributions

Let X be a random vector taking values in Rd with mean µ = EX
and covariance matrix Σ = E(X − µ)(X − µ)T .

Given an i.i.d. sample X1, . . . ,Xn, we want to estimate µ that has
sub-Gaussian performance.

What is sub-Gaussian?

If X has a multivariate Gaussian distribution, the sample mean
µn = (1/n)

∑n
i=1 X1 satisfies, with probability at least 1− δ,

‖µn − µ‖ ≤

√
Tr(Σ)

n
+

√
2λmax log(1/δ)

n
,

Can one construct mean estimators with similar performance for a
large class of distributions?
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high-dimensional median of means

An obvious idea is to use median of means.

Notions of median:

• Coordinate-wise median.

• Geometric median: argminy∈Rd
∑n

i=1 ‖y − xi‖ .

• Center of smallest ball containing at least half of the xi .

• Tukey median.

• ...a new notion introduced here.



coordinate-wise median of means

Coordinate-wise median of means yields the bound:

‖µ̂MM − µ‖ ≤ K

√
Tr(Σ) log(d/δ)

n
.

We can do better.



smallest-ball median

If µ̂MM is the center of the smallest ball containing at least half of
the block means Yj = 1

m
∑

i∈Bj
Xi , then with probability at least

1− δ,

‖µ̂MM − µ‖ ≤ K

√
Tr(Σ) log(1/δ)

n
.

No further assumption or knowledge of the distribution is required.

Almost sub-Gaussian but not quite.

Dimension free.

Computationally hard.



multivariate median of means

Hsu and Sabato (2013), Minsker (2015) consider geometric
median-of-means:

µ̂MM = argmin
y∈Rd

k∑
k=1

‖y − Yj‖ .

Minsker proves that, with probability at least 1− δ,

‖µ̂MM − µ‖ ≤ K

√
Tr(Σ) log(1/δ)

n
.

Computationally feasible, dimension free.

Still not sub-Gaussian.



median-of-means tournament

We propose a new estimator with a purely sub-Gaussian
performance, without further conditions.

The mean µ is the minimizer of f (x) = E‖X − x‖2.

For any pair a, b ∈ Rd , we try to guess whether f (a) < f (b) and
set up a “tournament”.

Partition the data points into k blocks of size m = n/k .

We say that a defeats b if

1

m

∑
i∈Bj

‖Xi − a‖2 <
1

m

∑
i∈Bj

‖Xi − b‖2

on more than k/2 blocks Bj .



median-of-means tournament

Within each block compute

Yj =
1

m

∑
i∈Bj

Xi .

Then a defeats b if

‖Yj − a‖ < ‖Yj − b‖

on more than k/2 blocks Bj .

Lemma. Let k = d200 log(2/δ)e. With probability at least
1− δ, µ defeats all b ∈ Rd such that ‖b − µ‖ ≥ r , where

r = max

800

√Tr(Σ)

n
, 240

√
λmax log(2/δ)

n

 .



sub-gaussian estimate

For each a ∈ Rd , define the set

Sa =
{
x ∈ Rd : such that x defeats a

}
Now define the mean estimator as

µ̂n ∈ argmin
a∈Rd

radius(Sa) .

By the lemma, w.p. ≥ 1− δ,

radius(Sµ̂n ) ≤ radius(Sµ) ≤ r

and therefore
‖µ̂n − µ‖ ≤ r .



sub-gaussian performance

Theorem. Let k = d200 log(2/δ)e. Then, with probability at
least 1− δ,

‖µ̂n − µ‖ ≤ r

where

r = max

800

√Tr(Σ)

n
, 240

√
λmax log(2/δ)

n

 .

• No other condition other than existence of Σ.

• “Infinite-dimensional” inequality: the same holds in Hilbert
spaces.

• The constants are explicit but sub-optimal.



proof of lemma: sketch

Let X = X − µ and v = b − µ. Then µ defeats b if

−
1

m

∑
i∈Bj

〈
X i , v

〉
+ ‖v‖2 > 0

on the majority of blocks Bj . We need to prove that this holds for
all v with ‖v‖ = r .

Step 1: For a fixed v , by Chebyshev, with probability at least 9/10,∣∣∣∣∣∣ 1

m

∑
i∈Bj

〈
X i , v

〉∣∣∣∣∣∣ ≤ √10‖v‖
√
λmax

m
≤ r2/2

So by a binomial tail estimate, with probability at least
1− exp(−k/50), this holds on at least 8/10 of the blocks Bj .



proof sketch

Step 2: Now we take a minimal ε cover the set r · Sd−1 with
respect to the norm 〈v ,Σv〉1/2.

This set has < ek/100 points if

ε = 5r
(

1

k
Tr(Σ)

)1/2

,

so we can use the union bound over this ε-net.

Step 3: To extend to all points in r · Sd−1, we need that, with
probability at least 1− exp(−k/200),

sup
x∈r ·Sd−1

1

k

k∑
j=1

1{| 1
m

∑
i∈Bj
〈X i ,x−vx〉|≥r2/2} ≤

1

10
.

This may be proved by standard techniques of empirical processes.



algorithmic challenge

Computing the proposed estimator is nontrivial.

Sam Hopkins (2018) gives a semidefinite relaxation of the
estimator that can be computed in polynomial time
O(nd + (dk)8).

Catoni and Giulini (2017) and Lecué and Lerasle (2017) define
alternative estimates.



general norms

So far we measured accuracy with respect to the Euclidean norm.

Let X1, . . . ,Xn be i.i.d. in Rd with mean µ, covariance matrix Σ,
and let ‖ · ‖ be an arbitrary norm.

What is the best possible accuracy/confidence tade-off? For
guidance, we turn to the empirical mean.



empirical mean

For constant “confidence” δ, the empirical mean has accuracy

E

∥∥∥∥∥1

n

n∑
i=1

Xi − µ

∥∥∥∥∥ <∼
E‖G‖
√

n
,

where G ∼ N (0,Σ). When the distribution is sub-Gaussian, for
small δ, the empirical mean has accuracy η such that

P

(∥∥∥∥∥1

n

n∑
i=1

Xi − µ

∥∥∥∥∥ ≥ η
)
≤ δ .

By standard arguments,

η ≤
C
√

n

(
E‖G‖+

√
log(1/δ) sup

x∗∈B◦

(
E(x∗(X − µ))2

)1/2
)
,

where B◦ is the unit ball of the dual of ‖ · ‖.



sub-gaussian performance

Question: Is there a mean estimator µ̂n such that, for all
distributions with a second moment, with probability 1− δ,

‖µ̂n − µ‖

≤
C
√

n

(
E‖G‖+

√
log

1

δ
sup

x∗∈B◦

(
E(x∗(X − µ))2

)1/2
)

?

Note: in the Euclidean case this coincides with our ”sub-Gaussian”
notion.

Answer: yes.
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estimator

• Set ε > 0.

• Let k = log(2/δ) and split the sample (Xi )
n
i=1 to k blocks Ij ,

each of cardinality m = n/k . Set Yj = 1
m
∑

i∈Ij Xi .

• Let T be the set of extreme points of the dual unit ball B◦. For
every x∗ ∈ T set

Sx∗ =

{
y ∈ Rd : |x∗(Yj )− x∗(y)| ≤ ε for more than

k
2

blocks

}
.

• Set S(ε) =
⋂

x∗∈T Sx∗ and select µ̂N(ε, δ) to be any point in
S(ε).



lower bunds

The term √
log(1/δ)

n
sup

x∗∈B◦

(
E(x∗(X − µ))2

)1/2

is necessary even if X is Gaussian. For any estimator ψ̂N and any
x∗ ∈ B◦,

‖ψ̂N − µ‖ ≥ |x∗(ψ̂N)− x∗(µ)| .

For any fixed x∗ ∈ B◦, x∗(X ) is real-valued Gaussian. For any
mean estimator, the accuracy is at least n−1/2σ

√
log(2/δ), and

here σ2 = E(x∗(X − µ))2.



lower bunds

The term
‖G‖
√

n

is “essentially” necessary. This term appears by bounding the
covering numbers of B◦ using Sudakov’s inequality. Whenever this
step is sharp, there is no estimator that has a better accuracy than
‖G‖/

√
n.
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